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A new numerical method for use in the solution of classical equations of motion is 
described, accurate to third-order in the coordinates and second-order in the velocities. 
The method has the unique property of preserving the energy and total linear and angular 
momenta at their initial values in the computation. This “discrete mechanics” is derived 
from general symmetry properties of the equations of motion and is compared in several 
numerical examples with conventional predictor-corrector methods. The theory is 
applied to derive a general expression for the impulsive limit of motion due to a potential. 

1. INTRODUCTION 

The problem of finding the trajectory which describes the motion of a system of 
bodies under the influence of a potential q5 and subject to the laws of classical 
mechanics is, once again, of broad, general interest. After fifty years of dormancy 
during the rise of the theories of relativity and quantum mechanics, the new 
complexity of problems accessible via the use of numerical techniques and digital 
computers has led to a reinstatement of classical mechanics as a useful tool in 
modern physics. 

In celestial mechanics, the wealth of detail now available from orbiting satellites 
allows a very precise description of the motion of the planets, which cannot be 
obtained from analytical methods [l]. Similarly, the launching of manned space- 
craft has made real-time calculations of complicated trajectories a necessity in 
astrodynamics [l-2]. 

In chemical kinetics, molecular scattering theory, and the theory of molecular 
potentials, the typical size of the systems involved has become so large that quanta1 
methods are no longer feasible: classical mechanics, although approximate, is now 

being applied as the only recourse in such systems (see, e.g., [3-4] for reviews). 
In statistical mechanics and fluid dynamics, increasing use is being made of the 
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fundamental model of a large system of interacting particles, solved via the 
equations of motion (see, e.g., [5-IO]). 

In any of the applications above, the typical problem of determinmg the motion 
of several bodies is solved in the following way: the initial conditions are deter- 
mined from experimental data or from analysis of the theory involved, the 
potential C$ of interaction is specified, and the classical equations of motion are 
solved numerically. This last step has been executed using very simple finite- 
difference formulas for the derivatives, predictor-corrector and Runge-Kutta type 
methods, Taylor-Series expansions, etc. What is desired in every case (and has 
sometimes been lost from view) is a calculated solution which corresponds as 
closely as possible to the exact, continuous trajectory of motion. One problem 
common to a41 the above mentioned methods. as well as to analytical perturbation 
expansions, is the unbounded deviation from the exact result as the time : increases, 
Besides ultimately destroying the value of the computations, this makes the 
discovery of Bong-term periodic motions extremely difficult. Thus, even with the 
aid of numerical solutions, the question of the stability of the solar system is still 
unsettled 111. 

In the present work, a new numerical method, called ‘discrete mechanics:” 
which was previously displayed for the specia! case of a potential composed of 
powers and inverse-powers of the interparticle distances [I l-121: is derived for ~ht 
general case in which 4 can be represented by a separable expansion. This “discrete 
mechanics,” now shown to be applicable to all physicahy reasonable systems, has 
the property of the conservation of the additive constants of motion in common 
with continuous mechanics. The generalized form of “‘discrete mechanics” will be 
obtained by requiring the difference equations of the method to have the same 
combinatorial and transformational invariances as the differential equations of 
motion. 

2. CLASSICAL EQLJ~IQNS OF Mono~ 

The system to be considered here is that of the general “many-body” problem, 
which, for completeness and for notational purposes, is summarized as foiiows: 
Let 1~ particles, indexed by i = 1, 2 ,..., II, of masses IKE , respectively; be interacting 
according to a potential 4, which is a function only of the coordinates of the 
7a particles. At time t, particle i has position vector ps = <Xi , Yi , Zi> with respect 
to an inertial reference frame OXYZ. Let the velocity of particle i be denoted by 
ii = dpJdt, which has, e.g., an X-component of -%i = dXi/dt. The vector distance 
pij from particle i to particle j is given by 

pij = pj -  pi .  (2 .  i) 
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Typically, the potential 4 is a function only of the interparticle radii pij: 

pij = j &.j 1 = d(& - ,)~ + (Yj - YJZ + (Zj - ZJ2 

These coordinates are shown in Fig. 1. 

(2.2) 

X 
FIG. 1. Coordinates of particles i and j. 

The kinetic energy Ti of particle i is defined by 

and the total kinetic energy T of the system by 

T = f Ti = i +,q(x; + p;A + 2;) 
i-1 i-1 

Finally, the total energy E of the system is given by 

(2.3) 

E = T + &12 , ~1s )..., PH,TJ (2.5) 

where 4 is, in general, a function of the N = n(n - 1)/2 interparticle radii pij (i < j). 
The problem to be solved is the following: given the position and velocity 

vectors pi and pi (i = 1, 2,..., rz) at some time t, find the position and velocity 
vectors pi’ and pi’ at some later time t’ = t + At. (In general primes will denote the 
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value at time t’). The exact solution is accomplished via Newton’s equatks of 
motion 

wzi& = Fi (i = I, 2,..., ilj (2. .g 

where pi = d2pi/dt2 is the acceleration of particle i, w&h, e.g., X-component 
Xi = d2Xi/dt2, and where Fi is the force on particle i. Here 

where a/S@, denotes the gradient with respect to the coordinates Xi , YL. ZI Le., 
qapi = (a/ax,, qaYi, ajaz,>. 

Newton’s equations of motion (2.6), together with the initial conditions pi and i;; 
at time i, represent a system of second-order ordinary differential equations which 
can be solved in principle to find the pi’ and hi’ at any time ,?I, In particular, for 
well behaved 6, Eq. (2.6) allow Taylor-Series expansions in 8/ to be constructed; 
leading to 

(&/Jff” 
pi’ = pi + &At + pi-- - ..~ 

2 
(~.‘+g 

rji’ zzz ci + P;(& f ..* (Z,$j b‘) 

where & is evaluated via Eq. (2.7), and the higher time-derivatives are obtained by 
the chain-rule and position derivatives of the forces, i.e., 

3. CONVENTIONAL NUMERICAL SQLUTIQN 

Typical methods for the numerical solution of the system of difTerentiai Eq. {,2.&j 
invoive finite-difference approximations for the derivatives (see, e.g., [6-g]), or the 
use of polynomial interpolation to give predictor-corrector or ~u~ge-~~tta type 
methods (for review, see, e.g., [13]). This latter technique is illustrated. by the 
fellowing prototype, third-order Adams’ corrector [lP15]: 
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Equation (3.1~) is used to define 4& . The use of Eqs. (3.1) leads to errors in the 
computed values of pi’ and ii’ which are proportional to (4t)4 and (4t)3, 
respectively; thus if 4 t is small, Eqs. (3.1) give a good approximation to the exact 
solution. Since Eqs. (3.1) are implicit and nonlinear in pi’ via &‘, they must be 
solved iteratively. Typically, “predicted” values for pi’ and ii’ are obtained via 
Eqs. (3.1) with 4& set to zero. These first approximations are then refined via 
functional iteration of Eqs. (3.1) until suitable convergence is obtained. 

Since the accuracy and convergence of Eqs. (3.1) depend upon the size of dt, 
large time intervals are broken into smaller time increments, and the solution 
determined sequentially over these subintervals. Because of this, errors made in the 
early steps propagate through the later steps, leading to the problem of “stability” 
with respect to errors. The implicit nature of Eqs. (3.1) does much to alleviate this, 
but all methods of this type are subject to an amplification effect as the number of 
steps becomes large. 

4. CONSTANTS OF MOTION AND “CONSERVATIVE" NUMERICAL METHODS 

As is well-known [16], certain invariances of the classical equations of motion are 
reflected in the time-independence of certain functions of the positions and 
velocities. The stationary values of these functions are called the “constants of 
motion” of the system. 

A. Energy 

If the potential function 4 does not depend explicitly upon the time t or the 
velocities ii, then the same trajectory occurs (but is traced out in reverse order) if t 
and t’ are interchanged (i.e., 4 t ---f -4 t) and the &’ replaced with -pi’. This effect 
is called the “principle of invariance with respect to time-reversal,” and as a 
consequence the value of the Hamiltonian functional H 

H=T+$ (4.1) 

is “conserved,” i.e., takes on a constant value (the total energy) which is inde- 
pendent of time. This “principle of conservation of energy” is summarized in the 
equations H(t) = E, or 

dH=H’-H=O 

for all 4 t. 

(4.2) 
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B. Linear Monzenfun~ 

If the potentiai 4 is independent of the origin of the coordinate system, e.g., is 
a function of the pij only, then the equations of motion are independent of a 
translation of the coordinate system (Galilean invariance). Because of this, the 
total linear momentum P, defined by 

is a constant of the motion, i.e., P’ = P for all At, 
If R is a position vector pointing to the center-of-mass of the system, le., 

where M is the total mass 

M = =f J?Ti 
I=1 

then 

P=MR (4.6> 

and consequently the center-of-mass simply translates (k constant) with time: 

R’=R+drP,‘M p-i.7) 

When the potential rj is independent of the orientation of the reference coordinate 
system, e.g., depends only upon scalars such as the pij or pi ) then the classical 
equations of motion are invariant with respect to a rotation of the coordinate 
frame. In this case, “space is isotropic,” and the total angular momentum L. 
defined by 

where 

is conserved, i.e., 
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Any numerical method of solution of the equations of motion which maintains 
the constants of motion at their initial values will be called “conservative.” For 
example, in order to conserve energy dE = E’ - E must be zero for each step, 
as calculated via Eq. (2.5). No other definition of “conservative” is consistent with 
that of classical mechanics. If a numerical method conserves energy, it is “better” 
in the sense of sharing a property with the exact, continuous solution. It is impor- 
tant to make a distinction between exact “conservation” as given here, and 
tautological definitions of “conservation” used by some authors [6-81 where, for 
example, I# is redefined to include the imbalance dE so that “conservation” occurs. 
This fallacy becomes most evident when a single time-step is considered. 

It might be expected that any numerical method whose difference equations 
possess the same symmetries as the differential equations of motion would have the 
same invariant constants of motion. For example, any method which leads to the 
exact result for a constant acceleration will give zero acceleration of the center-of- 
mass R, thus preserving linear momentum and the center-of-mass motion of 
Eq. (4.7). Conservation of energy and angular momentum are, however, much 
more stringent requirements for a numerical method. 

5. DISCRETE MECHANICS 

In conventional interpolatory numerical methods for solving the equations of 
motion, the differential Eqs. (2.6) and (2.7) specifying the accelerations are taken 
as defining the motion. In other words, conventional methods correspond to the 
approximate motion resulting from the use of exact forces. Since the constants of 
motion are integral properties of the differential equations, the functionals involved 
(i.e., H, P, L) are stationary only to the order of numerical approximation. The 
question of interest is how to design a numerical method whose difference equations 
(and their solution) have the same symmetries (and hence the same constants of 
motion) as the exact differential equations of motion (and their solution). With 
suitable restrictions, this question is answered by the method of “discrete 
mechanics” described below. Part of the results obtained for the special-case in 
which 4 consists of pairwise-additive terms of the power or inverse-power type 
were presented previously ([I l-121) in an ad hoc way. 

In what follows, the role of the Hamiltonian His taken as paramount, since this 
functional contains all of the necessary information concerning the motion 
(via Hamilton’s canonical equations). The lowest order problem is that of finding 
ail) and ai”) such that the solution (i = 1, 2,..., n) 

pi’ = pi + ii At + +a’,l)(At>” (5.la) 

fii’ = ii + ay) At (5.lb) 
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has. the appropriate properties (i.e., satisfies conservation principles). For exampEeS 
the method of Eqs. (3.1) is characterized by 

a?) = ;(2ai + ai’> (5.2s) 

23:‘) = *(ai +- aiT) <5.2-J) / 

and has the property that the solution is of the nighest order of exactness (error 
proportional to (At>” and (At)3 in pi’ and &‘, respectively). Since energy conser- 
vation will be required, the Eqs. (5.1) must be symmetric with respect to time 
reversal. En “‘discrete mechanics” only the more basic problem WI-LPE 
,!l! = &J) - 1 c - a,* will be considered: 

(At)’ 
pi’ = pi + ii At + a,” 2 i.3a) 

bi’ = ,bi + ai* At l\5.,%) 

For convenience in later formula manipulations, note that Eqs. (5.3) imp@ 

A. One Particle Subject to a Central Force 

Suppose i? = 1 and the single particle is moving under the inffuence of a centmj. 
potential, i.e., 

vxP> = 4(P) (-5.l’; -I 

Then, since C$ is neither a function of t nor of the orientation of the coordinate 
system OXYZ, E and L are constants of the classical motion. However, (b is ncf 

independent of the origin 0, so P is not conserved. The problem is to find a* such 
that E and L are also constants of the discrete motion. 

First consider conservation of the energy E. Now 

where 
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and 
04 = 4@‘> - 4(P) (5.7) 

(For simplicity of notation, the dependence on p and p’ will be denoted simply by 
4’ = &I’) and $ = b(p)). Th e requirement is that AE = 0 for an arbitrary time 
step At, i.e., 

AT = -A$ 68) 

Noting that, from (5.3), 

AT = &wz(fi’ - r;) . (b’ + 6) 

= ma* . (p’ - p) 

=F*.Ap 

where F* = ma* and Ap = p’ - p, the energy equation becomes 

(5.9a) 

(5.9b) 

(5.9c) 

F*.Ap = -A$ (5.10) 

This equation must be solved for F* in such a way that: (1) F* is symmetric 
(except for a change of sign) with respect to time-reversal (interchange of p’ and p); 
and (2) no coordinate X, Y, or Z is treated differently from the others (this condition 
is required by conservation of L). A solution is considered to be given if an equation 
of the form 

F* = G(F*) (5.11) 

exists, from which F* is solvable by iterative means. 
Suppose 

F* = I;*fi (5.12) 

where F* is the signed magnitude of F* and A is a unit vector in the direction of F*’ 
Clearly equation (5.1 

(Ifri*Ap =O, any 

0) is sufficient to hx F*, given ri: 

E”=-& (5.13) 

ralue of F* conserves energy). What direction of ii is appro- 
priate? It is required that Eq. (5.10) hold for: (1) all initial conditions p and 6; 
(2) all time steps At; (3) all 4 satisfying equation (5.4). Under these constraints, 
the most general form for fi is 

fi = alp’ +pp (5.14) 
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therwise one side of Eq. (5.10) would have explicit dependence on quantities, 
such as 6, which does not occur on the other side. Now 

l̂ z . Ap = ap’” - (cd - /3)p’ p + pp’ <5,i5) 

and the right-hand side of equation (5. IO) is A#, which is independent of the :erm 
p’ ’ 6 (which is anisotropic). Therefore LX = p and, since fi is a unit v~tor, 

P’ + P 
?%= lp’$.p! 

Combining Eqs. (5.12), (5.13) and (5.16), the final 

F”= -k!!$f 
LIP2 

form for F* is 

P) 

where Apz = p12 - p2 = (JJ’ - p)(p’ + p) = (p’ - p) I (p’ + pp. 
The above expression (5.17) for F* is, via (5.3); in the form of Eq. (5.1 I) with 

G(F*j = - do” A$ (pl + p) 

Since Eq. (5.1’7j may also be written 

F*= Arbp’+p 
dp p' -I- p 

then 

limF*= -!%,$=F 
Af-10 dP 

where p” = pip and F is the exact force given by Eq. (2.7). Therefore, the right-hand 
side of Eq. (5.17), i.e., G, is to lowest-order in At independent of P*. Hence, for 
small enough At, Eq. (5.17) can always be solved by simple functional iteration. 

The direction A of F* may be obtained in a direct way from conservation of 

angular momentum. Now, 

dL=L’-L {s’.liSa) 

= m[(p’ >: 6’) - (p x b)] (5.1&J) 

= $m[(p’ + p) x (6’ - 6) + (p’ - p) x (fY + b)] (5. ISC) 

Thus, from Eq. (5.3), 
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bxb=O (5.20) 

then 

AL = 112 Orw x a* 

= At ” + ’ x F” 
2 

(5.21a) 

(5.21b) 

By virtue of the constraints mentioned above that AL = 0 independently of the 
values given to At, p, p’ (via b), and $(p), Eqs. (5.21) must vanish because the 
cross-product is identically zero, i.e., fi lies along p’ + p. This leads to the result 
given in Eq. (5.17), where the equivalent argument that l^z was independent of p’ . p 
was used. 

Thus, conservation of energy gives the magnitude, and conservation of angular 
momentum the direction, of the force expression for F* which maintains E and L 
at their initial values for all values of At, p, Ej, and r$(p). The solution to 
equations (5.17) and (5.3) agrees with the exact solution to terms of order (At)” 
and (At)” in p’ and b’, respectively, and exactly conserves the energy and all 
components of the angular momentum. This is the type of solution which charac- 
terizes “discrete mechanics.” 

B. System of Several Particles with Pairwise-Additive Forces 

Suppose there are n particles with coordinates as described in Section 2, and the 
potential 4 is of the special form 

where, as before, pij = ] pij j = 1 pj - pi 1. For convenience, set 

(5.23) 

and denote +ij(p;i) by $ij . Since 4 is a function of the difference vectors pij , total 
linear momentum P is conserved by the exact motion. Similarly, dependence only 
upon the magnitudes pij indicates L is to be conserved. The problem is to find the 
“discrete mechanics” forces a,* (i = 1, 2,..., n) which conserve these quantities, 
as well as energy. 
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For the case of several particles, the change 4T in the kinetic energy over rhe 
time step 4r is given (via Eqs. (5.3)) by: 

The change BP in total linear momentum over the time step is 

If AP is to be zero independently of At, the particular values of the coordinates gi ~ 
and a constant velocity of OXYZ, the sum of the forces Se must be zero from 
general considerations. In continuous mechanics, because $ is pairwise-additive, 
so are the forces, i.e. 

i.e., the gradient of 4, with respect to X<-; = -2; - xi, etc. This foo‘!Iov;s f:.~m 
Eq. (2.7) and the chain-rule: 

Rote that Eq. (5.26) must hold: (1) for the case of constant forces (i.e., i.o 
lowest-order In At); and (2) for all values of the pr,i * even as pkl -+ CC for ail pairs 
kl f zj (i.e~, arbitrary n). Therefore Eq. (5.26) is a genera! requirement, and 
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where the Fi*j are now unknown. Subject to this condition, 

n-1 n 12 i-l 

=-Lj_f;+lG+CCG 
i=2 j-1 

(5.30a) 

(5.30b) 

(5.3Oc) 

(5.30d) 

and thus P is conserved for any values of the Fz (i < j). This is consistent with the 
remark made at the end of Section 2 that any method accurate to (At)2 (i.e., exact 
for constant forces) conserves linear momentum and the center-of-mass motion. 

2. Energy 

Using relation (5.29), AT may be rewritten as 

AT= f Fi*.Api 
i=l 

= 2 [- 
i=l 

f F; . Api + ig Fj*i . A pi] 
j=i+1 j=l 

n-1 n. 

= -‘p;.Api+ C x F;.Api 
i<i j=l i=j+1 

(5.31a) 

(5.31 b) 

(5.3 Ic) 

(5.31d) 

= C F;. Api, 
id 

(5.31e) 

In order to have AE = 0, AT = -04, or 

But, via Eq. (5.22), 

(5.32) 

(5.33) 
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where A& = & - $jj , and letting a Tij = FP; . d pij yields 

Now Eq. (5.35) must hold for all dt, all initial conditions pi and ai , and all 
functions r$ij . It is important to note that the distinguishability of the n particles is 
a consequence only of their different initial conditions pi and & , and the inter- 
actions C& . The invariance of Eq. (5.35) with respect to these quantities implies 
an invariance with respect to any reordering of the particles. Thus the principle of 
indistinguishability of particles requires each term in Eq. (5.35) vanish indepen- 
dently, i.e., 

This fixes the magnitude of each F$ . Since & depends only upon the scalar pj3 
(L conserved), the principle of isotropy of space fixes (as in Section 5.A) the 
directions of the Fz: 

Equation (5.38) gives an implicit expression for Fz ) which may be found by solving 
Eqs. (5.3), (5.29), and (5.38) iteratively, using, e.g., the starting values F; = 0. 
Such a solution by functional iteration will always exist for small enough B.t. 

3. Aqular Momenturn 

By virtue of Eq. (4.Q AL is given by the simp!e generalization of Eq. (5.21b): 

>: Fj” (5.39) 

By substitution of Eq. (5.29), and a procedure similar to that foliowed in Eq. (5X), 
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As in the case of conservation of E and P, if AL is to be zero for all values of the 
pij and pij, each term in Eq. (5.40) must be zero separate/y: 

(p;j + p<j) x F: = 0 6 <A (5.41) 

Equation (5.41) can hold only for all pu (arbitrary rotations of OXYZ) if Fz lies 
along pij + pij . This constraint, together with Eqs. (5.37), gives Eqs. (5.38). 

It is interesting to note that, because of the identical forms of the pairs of 
Eqs. (5.31a) and (5.31b), and (5.39) and (5.40), a solution has also been found for 
the case of a potential 4 of the form 

4cP PJ 1 ,.-., 

Here Eq. (5.37) becomes 

F,i* * dpi = -O& 

which imply (via (5.39)). 

(5.42) 

(i = 1, 2,..., n) (5.43) 

Fi* = $&pi’ + pi) (i = 1, 2,..., n) (5.44) 

Equation (5.44) is a direct generalization of Eq. (5.17). Of course, since the 4 of 
Eq. (5.42) is directly dependent on OXYZ via the pi , the total linear momentum P 
is no longer conserved. 

C. System of Several Particles with a General Separable Potential 

In this section, the results of the preceding sections will be used to obtain a 
“discrete mechanics” solution which conserves energy and both linear and angular 
momenta for the most general potential for which such a solution may be obtained. 

Consider a potential $ which is a sum of terms c#(!): 

(5.45) 

each of which is a separable product of $1:‘: 

@)(ple , p13 ,..., prL-d = &?~d &‘(P~J x ... x &~(P~-~.J (5.464 

(5.46b) 
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where each &c’ is arbitrary. This form for $ includes, in particular, Taylor and 
Laurent series expansions in terms of powers and inverse-powers of tke p<;‘s? 3,s 
well as Fourier expansions, etc. 

In order for linear momentum P, energy E, and anguiar momentmn L to be 
conserved over the time step At, relations (5.29, (5.32) and (5.41) must kid for 
all pfj and At. The problem, as before, is to find the Fz; which satrsfy these 
conditions. Since each of these equations is linear in the ; and must hold for ;in 
arbitrary expansion (5.45), Fz may be expanded correspondingly as 

where 

i,e., each term in the potential may be treated separately, and the results added. 
Therefore it suffices to consider a single term of the form 

and the results for a general potential such as that of equation (5‘45) composed via 
Eq. (5.47). 

In order to solve 

where AT,, = Fz Apfj and 

id i<.j 

the nature of the solutions found in Sections 5.A and 5.B should be kept in mind. 
Because of the invariance with respect to time-reversal: A Tfj must be antis:ymmetric 
with respect to interchange of the pt and pkf. The solution found for ~2 Fij mzst 
preserve the principle of indistinguishability of particies, and hold for arbitr-ary 
p;j r pij , and +ij . B ecause of the isotropy of space: no explicit dependence on 
coordinates can occur. This latter condition requires (since /r T;j = Fz Abci.J 
that Fz lies along & + pii , which is also an immediate consequence of Eq. (5.485). 
The magnitude of the Fz , or the ATij , must be obtained from conservation of 
ener,jg via Eq. (5.50). 



150 LAJWDDE AND GREENSPAN 

Since the right-hand side of Eq. (5.50) involves only products of the functions C& 
and & , and these are arbitrary, the most general form possible for the AT,, is 

AT, = C C &c& 6 <A 
c=o k=l 

where N = n(n - 1)/2 is the number of pij , 

N! 
= I!(N-c!)! 

(5.52) 

(5.53) 

the cz are arbitrary, and Gtek is a product of the N functions C& , G of which are 
evaluated at time t + At (using &) and N - & at time t (using pii). The subscript k 
runs over all possible combinations of L of the & from the total set N. 

Thus, e.g., 

@Ol = JJ 9ii (5.54a) 
i<j 

(5.54b) 

(5.54c) 

Substitution of Eq. (5.52) into Eq. (5.50) gives 

(5.55) 

Since Eq. (5.55) must hold for arbitrary q& , pij , and pii , the functions @tic are 
independently variable. Therefore the coefficients of each Qt, on each side of 
equation (5.55) must coincide, which gives 

1 c;; = 1 (5.56a) 
i<i 

1 CX = 0 (tk # 01, Nl) (5.56b) 
ici 

ccg= -1 (5.56~) 
id 

By the principle of indistinguishability of particles, the cg must be isotropic 
with respect to the ij, i.e., pii cannot be treated differently from pmn . Further, once 
the interaction corresponding to the pair ij is singled out, the remaining particles 
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are indistinguishable. This latter condition implies the ~2; must be isotropic over 
all values of k which leave the status of $ij invariant. For ij and each I, there are 
Inr;l) functions @‘ek containing the factor (bij and ($:i) functions Oer containing 
the factor & . The elements of each of these two sets must be ~~d~sti~gn~s~ab~e 
from the values of the &: 

By the indistinguishability of particles, one cannot determine which pair ij was 
singled out. This gives the conditions 

pi 
e = E, (i <A (5.58aj 

$j = - 
e Ce (i <j) (S.SSb) 

The above relations given in Eqs. (5.56), (5,57), and (5.58) are sufficient to f!x ai! 
the &. , with the solution given by (t = 0, I,..., N) 

Thus c$L = 4 if Vlick contains the factor & or cjh = Z8 if ~0~~ contains the factor $I;,: 

FOF example, 

ccg=c 1_ 1 
i<j + A iv - IL 

[ ! j 0 

agreeing with Eq. (5.56a). 
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Using the c$ given by Eq. (5.60) results, after substitution in Eq. (5.52), in the 
following expression for d T,,: 

(5.62) 
where the inner sum is over the (“7’) combinations of the N - 1 possible index 
pairs i, j, , not including i, j, = ij L of which correspond to primed 4 values. When 
expressed in this form, with the force Fs being given by 

x A& (P; + Pii) 
23 

(5.63a) 

Eq. (5.63) is seen to be a generalization of Eq. (5.38), with the part in braces being 
a totally symmetric representation of the other factors in the potential. Since the 
right-hand side of Eq. (5.63) is to lowest-order in At independent of any of the 
F; , Eq. (5.63) can be solved for Fz by functional iteration for small enough At. 

The expression given in Eq. (5.63) is the “discrete mechanics” force which leads 
to a solution agreeing to order (At)3 with the exact motion, and which conserves 
exactly the energy and total linear and angular momenta. 

It is interesting to consider the possibility that some #J~,~, is constant, e.g., 
#i,jp = 1. Clearly if i,j, = ij then A& = 0 and Fz = 0, in accord with contin- 
uous mechanics. If i,j, f  ij, then the @tJG which differ only by the change 
$ipja et diqj, become identical, and Eq. (5.63b) reduces to 

where the index pairs i,j, now vary over those N - 2 values for which i,j, f  ij 
or ij, . Therefore if a $.i,j, = 1, i.e., pipjg does not appear in the potential, the net 
effect is the same as setting up the original potential without including the $i,i, 
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factor, and deleting the i,j, term from d T. Thus pfQj, is afl “ignorable coordiliate” 
in L6discrete mechanics” as well as in continuous mechanics. As a consequence, 
Eq. (5.63) holds even if N is not equal to the total lnumber of possible radii pi3 7 
if the terms that are omitted do not occur in the potential (p. 

For the case of N = 1, 4 = +dj and equation (5.63’0) reduces to Eq. (5.38:: 

If N = 2 and the two radii occurring in the potential are piIj, and pizjl : 

4 = 4i$,?b,i2 
then Eq. (563b) gives 

with similar formulas for Ft,,, and F,*,,, obtained by cyclic permutations of the 
subscripts 1, 2, 3. 

Finally, it should be noted that, as in Section 5.6, if #I is a function of t.:te p, 
instead of the pij: 

4 = ff 9uPi) (,5.:VJ) 
ia 

then the entire sequence of results except for conservation of linear momentum 
follow, leading to: 
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where the i, vary over the 12 - 1 values not equal to i. Because of the property of 
“ignorable coordinates,” IZ may be a number less than the total number of particles 
if the neglected radii do not occur in 4 (for these Fi* = 0). 

6. IMPULSIVE LIMIT OF DISCRETE MECHANICS 

In problems where collisions occur, extremely large forces of very short duration 
are typical at the height of the interaction. In this situation, “impulsive models” 
are a convenient approximate description and were investigated extensively in 
nineteenth-century physics (see, e.g., [17-191). The impulsive limit is defined as the 
limit At + 0 while A 4 is held fixed. Under these conditions Fij At tends to a limit 
Iij , called the “impulse” transferred by the trajectory crossing the boundary over 
which the discontinuity A$ occurs: 

Iii = itrno (Fij At) (6.1) 

In the derivation of impulsive models, the limit At + 0 is assumed, so that 
pij ‘v pu , and the impulses Iij which give the change in the momenta are obtained 
by requiring conservation of E, P, and L during the collision. Since the limit follows 
from classical mechanics and the Fii At at each point, the total change of the motion 
occurs in a direction ri pointing towards the increase of 4. These conditions are 
sufficient to fix the impulses Iij in simple cases: the collision of two rigid-bodies 
[17-191, and the motion of three particles on a discontinuous potential (see, 
e.g., PW. 

Since “discrete mechanics” obeys the same conservation principles as continuous 
mechanics, and differs from it only in terms of order (At)3, it is expected that the 
impulsive limits of discrete and continuous mechanics will coincide. It is the 
purpose of this section to find the impulsive limit of “discrete mechanics,” and 
thereby give the most general exposition of an impulsive model that has been 
presented to date. 

It is conventional to consider the discontinuity 04 to occur as the limit of a 
potential 4 which becomes increasingly discontinuous as At -+ 0. Of course, in 
practice there is a real, continuous potential $ whose interaction is being modeled 
by a discontinuous limit potential, rather than vice versa. Suppose for simplicity 
that, for fixed At, 4 has the pairwise-additive form of Eq. (5.22). Then the “discrete 
mechanics” forces Fz are given by Eq. (5.38). What are desired are the “discrete 
mechanics” impulses 15 defined by the limits 

1; = fiiyo (F; At) G <A 

where the A& tend to constant discontinuities simultaneously. 

(6.2) 
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Clearly, from Eqs. (5.3), 

and the only other term in equation (5.38) whose limit is unknown is A& 1 No’ie 
that 

where 

Now, from Eq. (5.19a), Eq. (6.5) becomes 

Ap,j = ii’ + ij At _ ii’ + ii At 

2 2 
(5.&i) 

Substitution of Eq. (5.29) into Eq. (6.6b) via Eq. (5.3) gives 

where the convention is that F& = -Fz for ic >*j and 
Eq. (6.8b) may also be written 

for all j. Thus 
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Finally, 
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The expression for 1: is thus 

Ah -- Pii 

Pij * i 

&j + iii 
__- 2 ) 

(6.10a) 

(6. lob) 

(6.10~) 

(6.10d) 

(6.11a) 

(6.1 lb) 

(6.11~) 

(6.1 Id) 

where Bij = pij/pij is a unit-vector in the pij direction, and this last expression is 
implicit in the other I& via Eq. (6.10). Equation (6.11d) gives the direction of 1: 
as jJj . Denoting by I2 the signed magnitude of I$, i.e., 

I$,=- A+M (6.12) 

then 
I& = I,*,p^fie (6.13) 

(Note that Iz = I&, since bk6 contains the change of sign.) Substitution of 
Eq. (6.13) into Eq. (6.1 Id) via Eq. (6.1Od), with multiplication of both sides by the 
denominator of the right-hand side of Eq. (6.1 Id), gives 

e (& . &)] + A#ij = 0 (i <,j) (6.14) 
2 
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is the radial-component of bij . Equations (6.14) are a complete system of quadratic 
equations for the independent 1; _ Which set of roots of Eqs. (6.14) are chosen must 
be determined from considerations of the actual, physical motion (i.e., finite k?>. 

Since the potential C$ was given in the form of equations (5.22): the total potential 
shift Ll+ is given by 

in the impulsive limit. If constants p<j are defined by 

then the pij are the direction cosines of a unit-vector 6 in the direction of the 
increase of 4 in a plot against the pi3 . For finite At, rl would be in the direction of 
the negative of the gradient of + with respect to the magnitudes pu ~ 

For a general potential of the form given in Eq. (5.45), Eqs. (6.13) and (0,;4) 
for the impulses 1; still hold, if the potential shift A$ij is replaced by 

where now the c$$ and $tjS are the values of the potential term #j, on the 33.’ 
and old sides of the discontmuity, respectively. The sum over 8% that of Eq. (5,45). 

Since ‘“discrete mechanics” obeys conservation of energy and total linear and 
angular momenta for each At, it also conserves these quantities in the impulsive 
limit. Thus the impulsive limit of “discrete mechanics” is the same as that of exac; 
mechanics, i.e., I: = Ii,- . The results obtained in Eqs. (6.13), (6.14) and (6.13) are 
the most general expression that has yet been given in the literature for the 
impulsive limit of motion due to a potential. Hence “discrete mechanics” obeys the 
fundamental conservation principles where the potential is both continuous and 
discontinuous. The impulse model can be considered as a special case of “‘discrete 
mechanics,” or “discrete mechanics” viewed as a generalization of the impulsive 
model to finite At. “Discrete mechanics” is more than a numerical method: ii Is an 
approximate theoretical model for the classical motion. 
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7. EXAMPLES 

Many numerical applications of “discrete mechanics” have been presented 
previously for the special case of forces of the pairwise-additive, here to include 

problems of molecular scattering. 
The first example involves a potential of the inverse-power form of Eqs. (7.1) 

and serves to illustrate the coordinates and numerical methods involved. The 
second example is that of a three-body reactive interaction, and is taken from 
current research in this area [20]. 

Comparisons are made with the Adams’ method of Eqs. (3. l), and a conventional 
method used on problems of this type, which has truncation errors of orders (ot)8 
and (At)’ in the pi’ and &‘. Programs implementing the “discrete mechanics” and 
Adams’ formulas are given in Appendices I and II of [21]. 

A. 

Two Particles Subject to a Lennard-Jones Potential 

Many of the properties of dilute gases can be well-approximated by the theory of 
structureless particles. One of the most common potential forms used in this 
connection is the Lennard-Jones form for the interaction of two particles 1 and 2: 

4dflJ = 4E [($y - (e)6] (7.2) 

where the parameter E is the minimum value attained by +LJ, called the 
“well-depth” of the potential, and u is the value of plZ for which 4&Z) = 0. The 
physical properties of many gases are summarized by giving values for E and u and 
have been tabulated for many systems. If the units of energy and length are chosen 
to be E and a, respectively, then (bLJ assumes the dimensionless form 

bdfld = 4 [& - -j-] 

which will be used in the following discussion. 
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In the Adams’ method of equations (3.1), the classical definition of force as the 
negative gradient of the potential is used: which gives 

where ;I2 = pIaI~12 is a unit-vector, and 

a$,, 
n’fl, 

-q&gi-]5 
i 

directly from Eq. (7.3). In the case of the “discrete mechanics” solution, given by 
Eq. (5.17) or Eq. (5.38), the force F,?; due to &J is given implicitly by 

which is used in conjunction with Eqs. (5.3). 
For the Adams’ method, the equations which determine pi2 implicitly are 

where p12pP2 = F,, and ~P2ij;Z = Pi2 , with F,, and Fi2 from Eqs. (7.4) using pP2 
and pi2 , respectively, and ,ulZ , the “reduced mass,” given by 

For “discrete mechanics” the corresponding equations are 

pi2 = plz + & At + fi,*, 9 (7.9a) 

$2 = i$, + i$ At (7.9b) 

where pP2p& = F& with F,*, given by Eq. (7.6). Equations (7.7) and (7.93 were 
solved by simple functional iteration (successive substitution of plz and redetes- 
mination of the forces F& and F,*,) until convergence was obtained in a11 com- 
ponents of pi,_ to a relative tolerance of .OOOOl. If this convergence could not 
obtained in five iterations, the stepsize At was halved. In practice, only one or tw5 

iterations were required per step. Similar procedures were used to control the 
step-size At to bound the truncation error for both methods (for details, see the 
Appendices of 1211). 
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TABLE I” 

Sample Trajectories Using 4~~ 

Quantityb Method” Case 1 

b 

E 

x 

E (final)d 

max AE” 

No. Steps 

No. Function calls,!step’ 

Computing time (set)” 

DM 

A 

HO 

Exact 

DM 

A 

HO 

DM 

A 

HO 

DM 

A 

HO 

DM 

A 

HO 

DM 

A 

HO 

1.0 1.0 2.0 

1.0 10.0 1.0 

0.996949 0.333310 -0.234471 

0.996957 0.333321 -0.234519 

0.997050 0.333318 -0.234543 

0.996930 0.333309 -0.234487 

1.00004 10.00008 1 .ooooo 

1.00000 10.00005 1 .ooooo 

1.00007 10.00008 1.00002 

+ .00004 + .00008 0.00000 

+ .00004 +.00013 + .00002 

+ .00008 + .00008 +.00002 

1396 1006 335 

1530 1061 352 

114 99 64 

2.8 2.7 3.2 

1.6 1.5 1.7 

2.9 2.9 3.2. 

1.9 1.3 0.5 

1.9 1.3 0.5 

0.4 0.3 0.2 

Case 2 Case 3 

4 The implicit equations were, for methods DM and A, iterated until relative convergence in 
11 pi, 11 was obtained to 10-5; for method HO, two iterations were performed each step. Step-size 
was controlled to limit truncation error to about 1O-3 (absolute) after 500 steps (100 for HO). 

b See text for explanation of symbols. 
c DM = Discrete Mechanics; A = Adams’ method; HO = High-order method of [14]; 

“Exact” denotes exact answer. 
d Calculated value of energy at last step. 
B Maximum deviation of calculated energy at any step from initial energy. Error for DM is due 

solely to lack of convergence in the iteration. 
5 Total number of potential or force evaluations divided by number of steps. This includes all 

evaluations necessary for starting and step-size changes, as well as in the iteration. 
g Univac 1108 (1.5 p*s add time). Numbers are very crude (g20 %). 
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The initial conditions at t = 0 for the trajectories calculated were of the folIowing 
form: 

where Z,O, = -10 (essentially infinite), and values of the impact parameter 5 and 
energy E used are listed with the results in Table I. In every case the reduced-mass 
pr2 was taken to be 1. The scattering was assumed to be ended at the time t = :< 
when again pPl(f) > 10 (i.e. I $&B& < 10-V?). At this point, the value oC rhe 
energy, and the value of the “angle of deflection” ;y: defined by 

were calculated. with the sign of x taken to be that of the Y-component of &,(ri)B 
The calculated values of E and x are compared to the correct values for several 
sample trajectories in Table I. 

The results show the Adams’ method and “discrete mechanics” give comparabk 
computational accuracy from comparable computational effort (number of (sLJ 
evaluations, or number of steps). Of course, the problem used as an example here is 
not a severe test of the Adams’ method, since as t 4 co, 4ri(~ln) --j. 0. and in this 
limit all methods are conservative. 

B. A Thee-Particle Reactive Sytenz 

Another application of “discrete mechanics” to molecular interactions, this time 
requiring the formulas developed in the present work, is in the reactive scattering 
of potassium atoms from methyl iodide molecules, resuiting in the products 
potassium iodide and a methyl radical. This system has been the subject recent!y 
of a study using a high-order Adams’ method [20]. 

Let the potassium atom be denoted by the index I, the iodine atom by 2, and ilhc 
methyl group by a single particle with index 3. One of the potential forms used in 
[20] to model the interaction was the “modified Bunker-Blais” potential +.iiBB 
given by 



162 LABUDDE AND GREENSPAN 

where values of the parameters Dij , pij , aij (ij = 12,23, 13), y and 6 are given in 
[20]. Also given in [20] are expressions for the forces F,, , F,, and F,, , resulting 
from the gradients of q$,,,, , to be used in the Adams’ method of Eq. (3.1). 

Now, the potential 4MBB can be written in the form of equation (5.45): 

d MBB = $0) + p + #3) + @4) (7.13) 

where each $(!I (e = 1, 2, 3, 4) is of the form of Eq. (5.46) 

#%12 2 P23 3 P13) = &b,2> &kf23> &fl,) (7.14) 

TABLE II 

Component Functions of $MBB 

The 4:;’ (ij = 12,23, 13; 8 = 1, 2, 3, 4) are given in Table II. The “discrete 
mechanics” forces F: (ij = 12,23, 13) have the corresponding expansions 

J7; = F;‘1’ + F7’“’ + F:(3) + Fzc4’ (7.15) 

where, e.g., for ij = 12, from Eq. (5.69), 

(7.16) 

(Note that the factor (pi2 + p&/(& - pf,) may be extracted from each term of 
equation (7.15) for F&). The forces F$) and FE”’ may be obtained via cyclic 
permutation of the indices 12, 23, and 13 in Eq. (7.16). 

A comparison of the results obtained using “discrete mechanics,” the Adams’ 
method of Eqs. (3.1), and the high-order method of [14] and [20] is given in 
Table III for two characteristic sample trajectories. The quantities calculated and 
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TABLE III” 

Sample Three-body Trajectories Using ~~~~ 

Quantityb Method” Case 1 Case 2 

Total E(lW” erg) 
Final Condition@ 

Configuration” 

E( 10-I’ erg) 

L( 10-‘T erg-set) 

xe (rad.) 

Jj,(10-27 erg-set) 

Ejk(IO-x” erg) 

Number of steps 

384.43 1 587.286 

DM 1 + 23 12 A-3 
.A 1 +23 12 + 3 

HO r j 23 12 f  3 
DM 384.297 5ti7.222 

A 384.252 587. I07 
HO 384.397 587.141 
DM 102.361 247.977 

A 101.355 147.971 
HO 1Ok.380 147.973 
DM 17.167 114.769 

A 17.152 114.742 
HO 17,216 i 14.763 
DM 34.074 78.088 

A 34.066 78.085 
HO 34.077 78.077 
DM 367.131 472.456 

A 36T.101 472.365 
HO 367.181 472.434 
DM 7700 5660 

A 8260 6120 
HO 380 285 

0.&s See Table I. 
d At a final time f  when all further interaction of the free par:icle i and bound pair jk was 

negligible. 
c i + jk denotes particle i free and particles j and k bound al the final state. 

tabulated at the end of the trajectories were: the final total energy E; the magtitude 
of the total angular momentum L; the angle of deflection x of the resultant 
free particle i with respect to the Z-axis; the final translational energy Ef,j> of the 
free particle i with respect to the bound pair jk; and the magnitude of the rotatlonai 
angular momentum Jjk and internal energy Ej, of the final bound pair. (Formulas 
for the cakulation of these quantities from the pi and & are given in [ZO].j The 
vahxes of E and L are necessarily conserved by “discrete mechanics.” (Since the 
calculations were carried out in the relative-internal center-of-mass cartesian 
coordinate system of [ZO], the conservation of the total linear momentum P was 
separated out ab initio). 
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In order to ease the comparison between “discrete mechanics” and the Adams’ 
method, in both cases the implicit equations were iterated to convergence 
(1O-5 relative error). Surprisingly enough, this convergence was usually attained 
in a single iteration. The net result of this procedure was that both methods were 
very stable for the examples shown, but the conservation principles of “discrete 
mechanics” served to enhance slightly the accuracy for the same number of steps. 
The high-order method of [14] and [20], because of the fewer (-l/10) number of 
steps required, was of course the most efficient of the methods by a factor of about 
5 in time. 

8. REMARKS 

A. Stability 

It is well-known in the theory of numerical methods for differential equations 
that the use of an implicit set of formulas (such as Eqs. (3.1)) is necessary to 
maintain “stability,” i.e., retard the growth of accumulated error (see, e.g., [13] 
or [15]). Although this requires solution by an iterative method, in a “stable” 
system the error grows approximately proportional to the total number M of 
time steps (due to truncation error), rather than exponentially (due to feedback), 
as in an “unstable” method. Eventually, however, as time progresses, the error in 
the computed solution must grow unboundedly, and any method becomes 
inaccurate. For example, no matter which predictor-corrector system is used, the 
total energy of a system of particles becomes infinite with M. 

In contrast, with “discrete mechanics” the total energy and momenta are 
constrained at their initial values, and the errors in the calculated motions are 
largely confined to errors in phase rather than amplitudes. Thus “discrete 
mechanics” is intrinsically more stable than any conventional numerical method. 

B. Periodic Orbits 

Bounded, periodic orbital motion can occur only if the total energy of a system 
of particles is below the “energy criterion” (see e.g., [2]). Since, in conventional 
numerical solutions of the equations of motion, the energy increases slowly, but 
surely, due to truncation error as time progresses, such solutions will never 
correspond to closed orbits. There are problems, such as the stability of the solar 
system or the semiclassical theory of stationary states of atoms and molecules, 
in which it is O&J) the periodic orbits that are important. These problems are thus 
extremely difficult to solve by conventional methods. 

“Discrete mechanics” therefore has a usuable advantage in the fact that for 
small L3 t there is a one-to-one correspondence of periodic orbits with the exact 
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soiution of the equations of motion. Initial conditions w&A lead to periodic 
orbits in ‘“discrete mechanics” will correspond approximately to those which iead 
to such orbits in exact mechanics. 

In the theory of statistical mechanics the equilibrium distribution of states of a 
dilute fluid is uniform over the manifold of constant E, , and L in phase-space i23]. 
Scattering due to a potential modifies this uniform distribution of initial conditions 
to a non-uniform distribution of final conditions, but still on the manifoId of 
constant E; P and L. Since “discrete mechanics” preserves this property of 
remaining on the constant E, P, and L manifoid, it gives rise to a comp!ete 
corresponding theory of “discrete statistical mechanics,” whose results difer i’rom 
those of normal statistical inechanics by terms of the order of (di)a. Thus “-discrete 
mechanics” may be used for qualitative investigation o, f statistisal-rr;ecbar!.ica~ 
properties, such as correlation between collisions or the states of a large system of 
interacting particles, where conventional numerical methods have faiIed. The 
qualitative effects found will correspond to the exact solution, even rhough the 
quantitative results may only be approximate. 

Even as generalized in the present work, there still remain several disadvantages 
of ‘“discrete mechanics” which may restrict its usefulness. Firstly7 an obvious faiiing 
is the low order of accuracy in df. Traditional methods (Adams-Moulton, RLirge- 
Kutta, em,) as applied to dynamical motion have been of order (Ai)” GT h!gher,, and 
provide a solution with much less labor. Secondly, the potential + must be given 
in the form of Eqs. (5.45) and (5.46), with the forces given by Eq, (5.63). wh& is 
more cumbersome and ineficient than the direct differentiation of a genera! form 
of 4. Thirdly, the conservation of energy follows only to the extent of the iteration 
to convergence of Eq. (5.3), while typicai corrector equations of the form ;2.1) 
are usually iterated only once or twice. 

The first disadvantage has been partially alleviated by the discover) ,of higher- 
order energy conserving methods, which are currentiy under study. The second 
disadvantage may be insurmountable, since the conservation principies lead to z. 
complete soiution only when invariant with respect to an interchange of parti~Aes., 
which requires a separable potential form. Empiricai results indicate the chlrd 
“‘disadvantage” is in reality an advantage, improving the stability and reducing the 
accumulation of error, and typically requiring only one iteration (versus the cars 
iterations necessary in usual implementations of predic%x-corrector methcds.) 
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